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Abstract

Recently, deep learning (DL) demonstrated capable to
identify atrial fibrillation (AF) from electrocardiograms
(ECGs) with significant performance. Nevertheless, these
models may present an exaggerated self-confidence in their
predictions and showing poor calibration in their output
probabilities. In addition, such models cannot quantify the
uncertainty of the predictions: a fundamental property in
the clinical practice. In this study, we compared two DL
models with the same architecture, but the second one had
the first and last layers trained using a Bayesian approach,
i.e., variational inference (VI), allowing the estimate of un-
certainty of the predictions. We then compared the models
in terms of predictive uncertainty H and Expected Calibra-
tion Error (ECE). Our experiments showed that the both
models performed very well on the MIT-BIH Atrial Fibril-
lation dataset (sensitivity and specificity > 96%). The first
model proved being i) more confident than the second one
(H: 0.006 vs 0.090); and ii) more poorly calibrated (ECE:
0.360 vs 0.028). Despite the computational demand re-
quired for using the Bayesian approach in DL, our study
demonstrated the importance of quantifying uncertainty of
DL-based predictions for AF detection from ECG signals.

1. Introduction

Atrial fibrillation (AF) is a common cardiac arrhythmia
characterized by irregular electrical activity in the atria,
leading to an increased risk of stroke and other cardiovas-
cular complications [1]. Early and accurate detection of
AF is crucial for timely intervention and improved patient
outcomes. With the advancement of artificial intelligence
(AI), the potential for automated AF detection using elec-
trocardiogram (ECG) signals has gained significant atten-
tion. Recently, deep learning (DL) techniques for AF de-
tection have shown promising performance [2]. Neverthe-
less, these approaches are deterministic architectures, and
hence they lack strategies to measure classification uncer-

tainty.
The presence of uncertainty in DL models can often be

attributed to factors associated with data input. This type
of uncertainty is commonly referred to as “aleatoric uncer-
tainty” and stems from issues such as noise and imprecise
measurements. In addition, there exists another category
of uncertainty, known as “epistemic uncertainty”, which
arises from a lack of knowledge, e.g., DL model archi-
tecture, model hyperparameters, limited data [3]. Con-
sequently, performing uncertainty analysis becomes vital
to ensure robust classifier, particularly in clinical appli-
cations, where low error tolerance is essential. Methods
that employ Bayesian modeling have demonstrated favor-
able results in handling uncertainty analysis for DL mod-
els. One such example is the Bayesian Neural Network
(BNN), which introduces stochastic components over the
network parameters, simulating various possible models
with their probability distributions [4]. Despite being com-
putationally more demanding than deterministic models,
these architectures provide valuable uncertainty predic-
tions, which may make outputs more reliable and trusted.

The objective of the study was twofold: i) to develop a
novel DL architecture designed as a BNN for AF detec-
tion from ECG signals; and ii) to determine whether the
Bayesian approach would be beneficial, hence justifying
the increased computational demand, with respect to a de-
terministic model.

2. Methods

2.1. Data

In this work, the MIT-BIH Atrial Fibrillation Database
(AFDB), which is freely available on Physionet, was uti-
lized [5, 6]. This database contains 2-lead ECG signals
from 23 patients sampled at a frequency of 250 Hz. The
rhythm annotations within AFDB are classified into four
types: AF, AFL (atrial flutter), J (atrioventricular junc-
tional rhythm), and N (sinus rhythm). In this study, the
annotations of N were reclassified as “non-AF”, while AF
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Figure 1. Diagram of the BDL model. BN and RB stand
for batch normalization and residual block, respectively.

and AFL were merged as “AF”.

2.2. Preprocessing

A third-order zero-phase Butterworth bandpass filter
was employed on both leads with cutoff frequencies of 0.5
Hz and 40 Hz to suppress baseline wandering and power-
line interference. After filtering, each recording was seg-
mented with a 10 s window without any overlapping. To
facilitate robust model training and evaluation, a patient-
wise split was employed, dividing the dataset with a 80:20
ratio for training and validation. The final number of train-
ing and validation windows was 65655 and 18358, respec-
tively.

2.3. Uncertainty quantification

Uncertainty quantification in BDL models can be
achieved using Bayesian approaches. One of these ap-
proaches is the BNN model. Let D = {X ,Y} be a train-
ing set of N samples with inputs X = {x1, · · · , xN} and
targets Y = {y1, · · · , yN}, where xn ∈ Rd is the ECG
(d-dimensional vector) and yn ∈ RC , where C represents
the number of classes which, in this study, was 2 (AF vs
non-AF; hereafter encoded with the numbers of 1 and 2,
respectively). The predictive distribution for a new sample
x∗ can be calculated as:

p(y∗|x∗,D) =

∫
p(y∗|x∗, w)p(w|D)dw, (1)

where y∗ can take only the values 1 or 2.
The Monte Carlo method can be employed to approxi-

mate the integral in (1). To achieve this, it is necessary to
perform T random sampling of the weights w(t) from the

posterior distribution p(w|D), where t indicates the sam-
ple index. As a result, instead of a single output, T outputs
are obtained from the model

{
y(t); 1 ≤ t ≤ T

}
. In this

study, we tested several values of T , specifically, 1, 10 and
50. The set

{
y(t)

}
can be interpreted as a sample of the

predictive distribution. Having at disposal these T proba-
bilities, the final prediction of the BNN model on the input
x∗ can be computed as the sample mean

p(y∗|x∗,D) ≈ 1

T

T∑
t=1

p
Ä
y∗|x∗, w(t)

ä
= py∗ , (2)

while the uncertainty can be estimated by computing, for
example, the standard deviation.

This approach allows us to estimate the BNN prediction
and uncertainty. However, finding and sampling the pos-
terior distribution for complex models, such as neural net-
works, is computationally expensive because of their high
dimensionality. To address this issue, variational inference
(VI) [7], a popular approach for BNNs, was used in our
study.

2.4. Variational inference

In VI, instead of directly sampling from the exact poste-
rior distribution p(w|D), a variational distribution qθ(w) is
utilized, characterized by a parameter vector θ. The values
of θ are then learned by minimizing the Kullback–Leibler
(KL) divergence between qθ(w) and p(w|D), aiming to
make them as close as possible. This minimization pro-
cess is equivalent to maximize the evidence lower bound
(ELBO) function L(θ), which serves as the objective func-
tion to train the model:

L(θ) =
∫

qθ(w) ln p(Y|X , w)dw−DKL (qθ(w)∥p(w)) .
(3)

The objective of maximizing the first term in (3) is to
encourage a good fit to the data of the distribution qθ(w),
while minimizing the second term aims to make qθ(w)
close to the prior distribution p(w). Although determining
qθ(w) can be intricate in general, a common and straight-
forward approach is to assume an independent Gaussian
distribution w ∼ N (µ, σ2) for each weight. Furthermore,
the prior distribution is commonly taken as a standard nor-
mal distribution w ∼ N (0, 1), which we followed suit.

2.5. Model development

The architecture of the non-Bayesian DL (NBDL)
model consisted of 36 layers. To make the optimization
of such a complex network manageable, we incorporated
shortcut connections, similar to the residual network archi-
tecture. The network was composed of 16 residual blocks,
each containing two convolutional layers. The number of
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residual blocks was selected by maximizing the accuracy
on the validation set. These convolutional layers had a fil-
ter size of 3 and 32 × 2k filters, where k was a hyper-
parameter that starts at 0 and was incremented by 1 every
fourth residual block. Additionally, every alternate resid-
ual block reduced the input size by a factor of 2 through
subsampling. To improve convergence and training stabil-
ity, we applied ReLU activation function and batch nor-
malization after each convolutional layer. Furthermore,
we introduced dropout with a probability of 0.3, to pre-
vent overfitting. Subsequently, a dense layer comprising
128 neurons was employed, followed by ReLU activation,
batch normalization, and a dropout layer. Ultimately, a
softmax layer was utilized to generate a probability distri-
bution across the two output classes, enabling the detection
of AF in the ECG signals.

The BDL model was then created by modifying the first
and last layer of NBDL. These two layers were treated us-
ing the Bayesian approach and trained by VI. The BDL
model architecture was shown in Figure 1.

Both models were trained using: i) the Adam optimizer
with a learning rate of 0.001; ii) a batch size of 128; iii) a
number of epochs of 100; and iv) an early stopping proce-
dure with patience of 10 as end criterion during training.
The Bayesian layers were instead implemented using the
TensorFlow Probability package.

2.6. Evaluation

The performance of the models was evaluated using
metrics reflecting different aspects.

First, sensitivity (Se; detection of AF) and specificity
(Sp) were used to assess the model ability to correctly
identify positive and negative instances.

Second, the confidence of the predictions provided by
the models was quantified using the well-known predictive
uncertainty, which is defined as the Shannon Entropy over
the output probabilities, as follows:

H∗ = −
C∑

y∗=1

py∗ log2 py∗ , (4)

where py∗ is either the final prediction for BDL, as ob-
tained in (2), or the deterministic prediction for NBDL.
We quantify the overall entropy H for each tested model
by averaging such entropies across ECGs of the dataset.

Third, we verified whether predictions provided by a
model were well-calibrated. A model is well-calibrated
when the probability associated with the predicted class
label reflects its ground truth correctness likelihood [8].
Here, the calibration was quantified using the expected cal-
ibration error (ECE). ECE is typically computed by assign-
ing the samples of a dataset to different bins according to

Table 1. Metrics to evaluate the model performance. The
validation set is used for the quantification.

Model Se (%) Sp (%) H (bits) ECE
NBDL 97.6 96.9 0.006 0.360
BDL (T = 1) 98.2 99.0 0.043 0.005
BDL (T = 10) 100 100 0.078 0.082
BDL (T = 50) 100 100 0.090 0.028

their output probability, and then for each bin, the accu-
racy is quantified. A model is well-calibrated when class
probabilities match accuracy. Formally, the ECE is defined
as:

ECE =

B∑
b=1

#Bb

N
|acc(b)− conf(b)| (5)

where B refers to the number of bins which is set to 10, N
is the total number of samples, #Bb represents the number
of samples in the bin b, acc(b) is the accuracy achieved by
the model within a given bin, and conf(b) is the average
predicted probability of that bin.

3. Results

Table 1 reports the results for the selected metrics.
All models achieved high recognition rates on the test

set, with NBDL showing the lowest Se and Sp (97.6 and
96.9, respectively).

Regarding predictive entropy, NBDL achieved the low-
est H value (0.006), whereas the BDL models, for all T
values considered, had a higher entropy, with the second
lowest entropy for BDL with T = 1 (0.043). The high-
est entropy was instead obtained by BDL with T = 50
(0.090). Moreover, entropy showed an increasing trend
with respect to T .

In terms of calibration, NBDL displayed the highest
ECE value, while BDL obtained better calibration for the
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Figure 2. Calibration plot for BDL and NBDL models.
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three considered T values. Figure 2 shows the calibration
plot depicting confidence vs accuracy, along with the ECE
values obtained.

3.1. Discussion

Both models achieved a very high recognition rate.
However, this could be due to the fact that the number
of residual blocks had been selected on the validation set.
Considering the low number of patients of the dataset at
disposal, we preferred to keep the evaluation of the perfor-
mance on unseen data to future works, but we ensured that
models had similar performance before quantifying pre-
dictive uncertainty and calibration.

As expected, NBDL showed very high confidence in its
predictions, as indicated by the low average predictive un-
certainty H. Differently, BDL had consistently achieved
higher entropy values, which points to a lower confidence.
Moreover, the gradual increase in H throughout the iter-
ative process (increasing T ) in the BDL model reflected
its ongoing adaptation and exploration of the parameter
space, highlighting a greater degree of uncertainty in its
predictions.

The proposed architecture had only two layers trained
with VI. This choice was a compromise between the pos-
sibility of estimating the uncertainty and the computational
demand, while keeping the number of parameters of BDL
comparable to NBDL.

The results presented in this study suggest that in-
corporating uncertainty quantification techniques, specif-
ically with the proposed BDL model, can significantly en-
hance the performance for AF detection in terms of over-
confidence and calibration. Moreover, the results have
significant implications for the development of robust DL
models for AF detection and their integration into clinical
practice. Indeed, by providing clinicians with uncertainty
measures, BDL enables them to make more informed de-
cisions, possibly improving patient risk stratification, and
enhancing overall patient care. Ultimately, this research
contributes to the advancement of AI-driven cardiovascu-
lar disease management for AF detection and highlights
the importance of uncertainty quantification in DL mod-
els.

4. Conclusion

In this paper, we proposed a Bayesian DL model for
AF detection that quantifies uncertainty by taking into ac-
count both epistemic and aleatoric uncertainties. The sig-
nificance of this work is two-fold: i) it promotes the trust in
AI-based predictions of AF detection thanks to uncertainty
estimates; and ii) despite the computational demand re-
quired, it shows it is still convenient to include a Bayesian
approach into the pipeline. Future research should inves-

tigate the potential of preprocessing techniques, such as
augmentation and resampling, to enhance the performance
of uncertainty quantification in Bayesian DL models.
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